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A model is presented of the two-dimensional boundary-layer and interior flow in a 
rectangular box resulting from the application of a quadratic temperature variation 
on its lower surface. The other walls are insulating. It is shown that a similarity form 
exists for the narrow, thermocline-like layer near the lower surface, and that this can 
satisfy all known consistency conditions with the interior, together with either laminar 
or turbulent side-wall regions. The interior temperature and Nusselt number are 
shown to be insensitive to Prandtl number, and to  be primarily functions of the 
horizontal Rayleigh number Ra,. 

Specifically, the interior temperature, relative to the coldest applied value, is 60 yo 
of the total applied temperature range. The Nusselt number is predicted to  vary as 
0.26Rat for a box with unit aspect ratio. The dynamics of the side-wall region, and 
the details of the imposed temperature variation appear to be unimportant in deter- 
mining the overall buoyancy exchange. The solutions are compared with numerical 
and observational results, and generally good agreement is found. 

1. Introduction 
A feature of most geophysical convection systems is that the heating and cooling 

responsible for motion is impressed non-uniformly at the upper or lower boundaries. 
The result is a strongly asymmetric circulation. Thus, for example, the earth’s oceans 
are cooled most strongly a t  high latitudes, and it is there that most of the bottom 
water is formed, with weak upwelling elsewhere. The atmosphere’s Hadley-cell 
circulation is driven by heat transfer from the warmer surface a t  equatorial latitudes 
compared with more temperate latitudes. 

Following up the ideas put forward by Stommel(l950, 19621, Rossby ( 1  965) studied 
by laboratory experimentation the archetypal problem of interest here. A long 
rectangular box, insulated on all faces except the bottom, was heated so as to maintain 
a steady linear temperature increa.se with distance along that face. Rossby observed 
the circulation set up and measured temperature profiles to determine the efficiency 
of heat transfer. He observed that the heat exchange of the fluid with the lower 
boundary occurred in a thin boundary layer, the flow in which was directed toward 
the hotter end of the cell. There it rose against the wall, forming a line plume, flowed 
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along the upper surface in a thicker layer and was then advected through a remarkably 
well-characterized broad interior region toward the lower boundary. ‘ The interior is 
advectively warmed, hence its temperature is an average of the warm fluid supplying 
it. The heat is withdrawn from it by forcing the warm fluid (by continuity) down 
against the bottom where it is cooled by conduction. Hence the asymmetry is just a 
measure of the efficiency by which heat is transported by convection and conduction’ 
(Rossby 1965). Two significant results obtained were that the interior was relatively 
quiescent and weakly stably stratified in temperature, and characterized by a tem- 
perature excess which was about 70 % of the maximum temperature difference 
imposed a t  the bottom. 

Subsequently, Somerville (1967), Beardsley & Festa (1972) and McKenzie, Roberts 
& Weiss (1973) numerically treated problems similar to that studied by Rossby. 
Although detailed comparison with the laboratory results is not possible, because 
each numerical analyst used different boundary conditions and had difficulty achieving 
sufficiently large Rayleigh numbers, all remark on the qualitative similarities with 
Rossby’s work and the lack of sensitivity the results display with respect to variation 
of Prandtl number. 

Scale analyses which presumably hold to very large Rayleigh numbers have been 
detailed by Rossby (1965), Goody & Robinson (1966) and Stone (1968), although the 
latter two studies are concerned with the problem of no friction at  the diabatic surface. 
Further, Duncan (1966) has solved a similar problem in axisymmetric co-ordinates 
with strong rotation, by the method of matched asymptotic expansions. Stern (1975) 
discusses Rossby’s problem, but mainly for strongly rotating fluids. 

We present here a new solution to Rossby’s archetypal problem, drawing on a 
recent study of convection in a box driven by a discrete buoyant plume a t  one end 
(Manins 1979) to justify the approach taken. Thus we accept that the fluid in the lower 
boundary layer, first cooled and then heated as it flows toward the hotter end, is able 
to turn upwards there and correctly supply the narrow wall plume. (Wesseling (1969) 
has studied the turning region in detail for the case of BBnard convection.) At suffi- 
ciently high Rayleigh numbers the plume is turbulent. This plume, together with the 
region where the plume flows out along the upper boundary in a thick layer, and the 
interior or core region, have been studied by Manins (1979) while the passive boundary 
layer on the colder wall has been studied by Walin (1971). The existence of these 
boundary layers on cold and hot walls gives consistency conditions on the remainder 
of the flow, which the solution derived here satisfies. 

In  this paper we concentrate on the lower boundary layer and the interior of the 
box. The forms of the characterizing stream function and buoyancy field for the 
interior are specified up to unknown coefficients and, in the course of solving for the 
boundary-layer functions, these will be evaluated. Now, the maximum and minimum 
temperatures are found at opposite ends of the bottom of the box; this factor is 
probably more important in determining the form of the solution than the shape of 
the impressed temperature field. Thus we feel free to depart from a linear temperature 
distribution, and look for one which admits similarity solutions to the boundary-layer 
stream function and buoyancy field. 

Two problems will be solved. In both cases, the imposed temperature distribution 
for similarity solutions to be possible is one which increases as the square of distance 
from the colder end. (i) For low (but not too low) Rayleigh number, the rising plume 
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is laminar with negligible horizontal motion in the interior. (ii) At higher Rayleigh 
number, the plume becomes turbulent, with significant entrainment from the interior. 
A possible limitation on the maximum relevant Rayleigh number for this latter 
problem is the assumption that the lower boundary layer remains essentially laminar 
and does not spontaneously break up before the hotter end of the cell is reached. We 
do not ask that the lower layer be laminar, merely that it is reasonable to treat it in 
terms of a constant diffusivity. Spontaneous break-up of the layer would be inhibited 
by interior subsidence into the layer, and by the horizontal pressure gradient which 
helps to sweep (laminar or turbulent) fluid in the boundary layer towards the plume, 
where it can rise. With this proviso, there is no upper bound to the Rayleigh number 
in this model. 

2. The mathematical model 
Consider the steady two-dimensional flow in a box of length L and height H 

(figure 1 ) .  Define axes 2 horizontal, z vertical with origin at  the cooler, left-hand end 
of the lower surface. The fluid density at  the origin is p1 and the buoyancy at  a point 
where the density is p is defined by 

A' = - g p ! ? l  (3.1) 
P1 ' 

where g is the acceleration due to gravity. Primes will denote dimensional dependent 
variables. While all other surfaces are insulated, the boundary z = 0 is considered to 
be no-slip and maintained at a buoyancy given by 

where A, is the buoyancy at  the hotter, right-hand end of the bottom, and I, will be 
specified by the demand for similarity solutions to be obtainable. 

The equations of motion are then 

vV4$' = A:- J($' ,  Va$.'), ( 2 . 3 ~ )  

K V ~ A '  + J($', A') = 0.  (2 .3b )  

Equation ( 2 . 3 ~ )  is the vorticity equation, (2.3b) the buoyancy equation, and Y and K 

are respectively the kinematic viscosity and diffusivity of temperature in the fluid. 
V2 denotes the two-dimensional Laplacian. The stream function $.' is defined by 

ui = av/az, ull = -a$'/ax. (2.4) 

These equations may be scaled as follows (Rossby 1965). Let 6 < H be the bottom 
boundary-layer thickness (for both $ and A ) ,  and set 

Here Ra, is the boundary-layer Rayleigh number, assumed large, and we will intro- 
duce the Prandtl number v = V K - ~ ,  assumed of order unity.' 
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FIUURE 1. Sketch of the model, with a quadratic buoyancy distribution maintained at  the 
surface z = 0. The case of a turbulent side-wall plume is shown. 

The scaled form of (2.3) is 

whereas, in the interior, equations (2 .3)  reduce, for large Ra,, to 

(2 .6b)  

(2 .7a )  

(2.76) 

Two interior solutions are possible. However, the solution with 

must be rejected on two grounds. First, Hignett (1979)  found only a very weak vertical 
thermal gradient in his experiments (Rossby's 1965 experiments were far less well 
insulated). Secondly, the boundary condition in appendix A, and this interior solution, 
together imply zero net mass flux in the bottom boundary layer. This in turn forces 
a region of return flow toward the cold end in this layer, which is physically un- 
reasonable and not observed in any experiments. We therefore choose the other 
interior solution, in which aA/agvanishes also, so that the interior is isothermal. 
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Away from the immediate vicinity of the side-walls, RaEz a2/at2  is negligible 
compared with a2/ar2, and the bottom boundary-layer equations become 

( 2 . 8 n )  

(2 .8b )  

with A = p, = a$/av = 0, 9 = 0. ( 2 . 9 )  

Equations ( 2 . 8 a ,  b )  are second order in 5, and require in general two boundary con- 
ditions to  be satisfied. These must be obtained from consideration of the boundary 
layers on 6 = 0 and 1, the cold and hot walls respectively. Appendix A discusses these 
layers, and shows that 

$ = O ,  c = o .  ( 2 . 1 0 )  

For laminar side-wall layers, i t  does not seem possible to derive a consistency con- 
dition on the hot wall, since the fluid turns in an essentially viscous, inertial corner 
region, in which diffusion is of secondary importance; uniqueness and existence of 
such problems remains an open subject (Batchelor 1967, pp. 285-288) .  The case of a 
turbulent side-wall layer is dealt with below. 

Equations ( 2 . 8 a ,  b )  are now specified if $, A are known for 7+00, i.e. in the interior 
of the box (figure 1). Now for cr > 1, L / H  > 1, and Ra, sufficiently large for the plume 
to be turbulent, Manins ( 1 9 7 9 )  has shown that the interior stream function $I to  a 
good approximation is given by 

where co is the virtual origin of the turbulent plume emanating from an equivalent 
discrete source. The flow in the interior is a stagnation flow. The interior buoyancy 
field is weakly stably stratified with horizontal isotherms and is well characterized 
for the present purpose by a constant A,. At lower Ra, the plume is laminar and the 
interior stream function below a stagnation-flow-like outflow region is then 

$1 5. ( 2 . 1  1 b )  

That is, the flow in the interior ispredominantlypure subsidence. The interior buoyancy 
is again characterized by a constant A,. Thus we impose the boundary conditions that 

$I . c5 (5 -50) ,  ( 2 . 1 l a )  

as v+m, A A, +fn(5,5); 
and for a laminar plume, case (i), $ $,.ct; 
or for a turbulent plume, case (ii), $ $I=  ((6- 50) .  

( 2 . 1 2 )  

Similarity solutions to  equations ( 2 . 8 )  subject to  (2 .9) - (2 .12)  are sought which retain 
all the essential nonlinearities of equations ( 2 . 8 )  while yet simplifying the system to a 
set of ordinary differential equations. It is found that such solutions are possible if 

( 2 . 1 3 )  

Comparison of ( 2 . 1 3 )  and ( 2 . 1 2 )  as + 00 gives p = 2 and g ( x  --+ 00) = 0 so that the 
boundary-layer thickness, from ( 2 . 1 3 c ) ,  is independent of 6. The flow towards a 
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‘stagnation point’ at a rigid boundary (a special case of the Falkner-Skan problem; 
Goldstein 1965, chap. IV) gives rise to a boundary layer with similar behaviour. Then 
the required similarity forms for solution of equations (2.8) are 

II. = 5f (71, A = t2s(rl) + Wrl) (2.14) 

and f, g, k are universal functions to be determined.? 
It should be noted that (2.14) satisfies the side-wall condition (2.10) automatically. 

In  addition, note that (2.14) represents a truncation of a Taylor series expansion in 
5 for $, A. At no other point may the Taylor series be truncated, incidentally. The 
form of (2.14) is essentially that used by Duncan (1966) for an axisymmetric solution. 

Substitution of (2.14) into (2.8) gives 

(2.15) 

where the superscripts denote the order of differentiation with respect to 7. The 
boundary conditions (2.9) become 

f = O ,  f ‘ = O ,  g = 1 ,  k = O ,  at q = O ,  (2.16a-d) 

as well as the requirement that the system be steady: namely that there is no net 
buoyancy flux into the box. Since all other surfaces are insulating, 

1 aA 
a t  = 0,  --[= 0. 

0 87 
From (2.14) this gives 

at T,J = 0,  k‘ = -59’. (2.1 6 e) 

The other boundary conditions are: 

case (i), as r,~-+oo, f N C, g N 0 ;  (2.17 a) 

or case (ii), as ~ - + C O ,  f N A y + B ,  g N 0. (2.17b) 

Thus the problem to be solved is (2.15) with boundary conditions (2.16) and either 
(2 .17~)  or (2.17b). Since the lower boundary layer must be thin, S <  H ,  and the 
interior must be describable by (2.12), restrictions on the applicability of the solutions 
are that 

g > 1 and Ra, 9 ( L / H ) 5  1. (2.18) 

(In what follows, c is treated as an O( 1) quantity unless otherwise stated.) 

3. Solutions and results 
Numerical solutions were obtained with modified forms of (2.17) as boundary 

conditions. Precise forms of these will be discussed below. The Taylor system (Norman 
1972) was used for the simulation of the equations.$ 

t Note that a quadratic distribution of heat $ux imposed on the lower boundary can also be 
handled with this formulation; the boundary layer scales with Ra;*. 

This system automatically differentiates the equati0n.s many times, evaluates a Taylor 
series solution, and writes Fortran subroutines to solve the problem to the accuracy of the 
computer. 
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Consider case (i) first. As 7 --f 03, (2.15) becomes 

with asymptotic solution 
g = gne-cT, (3.4) 

(3.5) k = k, e - Q  + k,, 

f -c  = %e-c'i+ae-cv/u, c4 (3.6) 

for some unknown constants go, k,, k,, a and C. It is clear that all five constants will 
be necessary to satisfy the five boundary conditions a t  7 = 0. For u > 1, the second 
term in (3.6) dominates the first. This means that the boundary layer splits into two. 
The thinner, inner layer is thermally driven, and is of width order unity or C-l, 
whichever is larger; whereas the outer layer, of width crC-l, is dynamically driven and 
is essentially homogeneous. 

It is interesting that the nonlinear momentum terms are important in this solution; 
a scaling based on large cr would have rejected them (the resulting problem has no 
solution). However, they have virtually no influence on the thermal field.? The outer 
layer is very wide for large IT, but it is possible to avoid excessive integrations by 
employing the asymptotic solutions 

f - C + (3.9) 

a t  a value of 91 s~ifficiently large so that g is very small (7 = 6 was chosen; with con- 
firmation from larger values a posteriori). Starting from these asymptotics ((3.9) is 
an exact solution of ( 2 . 1 5 ~ )  with g set to zero), (2.15) are then integrated inwards to 
7 = 0, and the five constants then adjusted to satisfy the boundary conditions (2.16). 

The solution is shown in figure 2 (a), for u = 5 and u = 18. It demonstrates the very 
weak dependence on cr for 7 < 2 (the thermally driven region), followed by the 
transition to the viscous-inertial balance for large 7, which does vary with U. The 
derivatives off and g a t  7 = 0, i.e. f " (O) ,  f " (o ) ,  g ' ( O ) ,  vary by less than + %, 6 yo and 
2.5% respectively as u varies from 5 to 75, so that the thermal layer solution is 
approximately independent of U. Similarly, k ,  varies by less than 2 yo, being essentially 
determined in the inner layer. For 7 2 3, the solution is approximately homogeneous: 

Figure 2 ( h )  shows the variation of C with U. The asymptotic value for large u ( >, 5) 

c - 0 - 8 6 ~ ~ ' * ~ ,  (3.10) 

t Attempts to use matched asymptotic expansion methods fail because the inner layer is 

9 N 0, k - k,. 

is, for (T < 100, 

still nonlinear and therefore not tractable. 
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FIGURE 2. Similarity solutions for the lower boundary layer in figure 1 for the case of a laminar 
side-wall layer. (a )  -, cr = 7 ;  --- , cr = 18; g and k are so similar at cr = 7 ,  18 that only 
the former case is shown. ( b )  Variation of C = f(v,i -+ co) with cr. 

so that a measure of the thickness of the outer layer, d - l ,  varies as 0 - l - O  48 = 

The result (3.10) is in disagreement with the findings of Somerville (1967), and 
Reardsley & Festa ( 1  972). Both found that the maximum interior stream function 
was insensitive to values of cr larger than about 10. The difference is due to the low 
values of Ra, (less than 106) used in these studies. The non-dimensional width of the 
viscous inertial boundary layer is, from ( 2 . 5 ) ,  (3 .  lo ) ,  

(LH-1) Ra-8 0-0.52 
L 

which for a square cell is of order unity for RaL = lo5, i.r 2 1 .  Thus the outer layer 
overlaps the interior of the fluid, so that + cannot reach its full value, in their studies. 
Only when Ka, 2 108 and g moderate, can we expect the asymptotic solution to hold. 
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Case (ii), the turbulent plume, is more straightforward. As 7 -+ co, (2.15) becomes 

f” - 29 + ( A t ”  - (Ay + B)f”) ,  u 
(3.11) 

9“ - 2Ag - (A7 + B )  g’, 

k“ N - (Ay +B)  k’, 

(3.12) 

(3.13) 

with asymptotic solution 

k = k, exp-(+Ay2+By)dy+k,, 1: (3.14) 

(3.15) 

where powers of integrals denote repeated integration. Equations (3.14)-(3.15) involve 
a total of six adjustable constants, whereas (2.11) give only five boundary conditions 
a t  7 = 0. (The apparent degree of freedom in the problem is illusory, however.) As the 
asymptotics (3.14)-(3.16) are too complicated to use numerically, the alternative 
method of integrating outwards from y = 0 to  a large value (q= 10) was employed, 
followed by imposing the approximate conditions 

f ”  = f ”  = g = 0, 7 == 10. (3.17) 

The guessed values off”(O),f”(O) and g‘(0) can then be adjusted to satisfy (3.17). 
The solution is illustrated in figure 3 (a ) ,  which shows clearly that f ”  and g share the 

same decay scale; the coefficient a in (3.16) is in fact very small for u 2 5. However, 
unlike case (i), a solution exists for cr infinite (with only five adjustable constants), 
and non-infinite u merely presents an O(u-1) perturbation to the u-infinite case. This 
perturbation is that which would be found in a straightforward expansion of the 
problem in powers of u-l, in fact.t The solution appears to be unique; a considerable 
amount of computer time was spent attempting to  obtain other solutions with a 
variety of methods, all without success. (Indeed, uniqueness cannot be established 
even for the much simpler Falkner-Skan problem, see Batchelor (1967, chap. 5 ) . )  The 
buoyancy distribution is almost identical to case (i). 

The effect of the nonlinear momentum terms is thus very weak for cr 2 5, say. 
Figure 3(a)  shows that the boundary-layer behaviour has reached its asymptote in 
the interior for q 2 3, so that (3.171, for example, is adequate. Figure 3(b) shows how 
the asymptotic solutions vary with cr. The insensitivity with respect to cr is interesting, 
and must await experimental confirmation. Of particular note is that the asymptotic 
value of the buoyancy, k-, is again found to be independent of u > 1 to within 0.4 %. 
Being typical of the results, the solution for infinite u will be used in the following 
discussion whereas, in the laminar case, the solution for cr = 7 (heated water) will 
normally be used. 

t The lack of such a solution in the laminar case is what gives rise to the double-layer 
structure. 
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FIGURE 3. Similarity solutions for the lower boundary layer in figure 1 for the case of a turbulent 
side-wall plume. (a)  -, v = 00. , --- , u = 5. ( b )  Variations of A ,  B as functions of U .  

0 

Case (i) can be connected with case (ii) very simply, when IT is large, by means of 
matched asymptotic expansions. Consider 7 - O( 1) to  be the inner region, where the 
nonlinear momentum terms are negligible. Let the outer region be characterized, for 
large IT, by 

Y = a b y ,  f = @ F ,  A =  A,, a,b > 0, (3.18) 

where a, b are to  be found. Substitution in (2.15) yields 

a + b =  1 (3.19) 

and F = a+be-aY. (3.20) 

Matching between inner and outer regions involves, essentiaIly, equality off and its 
derivatives between the inner solution as y --f cg and the outer as Y -+ 0. The inner 
solution can only be that for case (ii), the turbulent plume, since no inner solution 
exists with f + constant. Hence 

(3.21) 
d 

a = b = 4, F(0)  = 0, Fy(0)  = f ’ ( y -+co)  = - ( (Ay+B) = A ;  
d7 
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and higher derivatives are trivially continuous to  leading order. Thus 

P = a( 1 - e-aY) (3.22) 

and a = A&. (3.23) 

From 9 4, a - 0.80, so that 
c = f (7 + 00) N 040cT:, (3.24) 

which is in excellent agreement with (3.10), over the range studied. Thus the strong 
agreement between buoyancy distributions in cases (i) and (ii) is now explained. 

It is easy to see that the double-layer structure is a general feature of the problem, 
and not just of the similarity solution. One can see physically why there must be two 
layers. There is interior downwelling, which impinges on the bottom, no-slip boundary. 
Were there no stratification, the downwelling would be turned by a balance between 
nonlinear and viscous vorticity terms. The existence of stratification cannot completely 
remove this layer because there is insufficient freedom in the buoyancy layer to satisfy 
all the boundary conditions. 

4. Interior asymptotes 
The asymptotes for case (i) for large ?,I are computed to be 

f - O*86cF48( N 2.29 for CT = 7) ,  g - 0, k - 0.60. (4.1) 

Similarly, for case (ii) 

f N 0.6387 - 0.34, g N 0, k - 0.58. 

(Note the similarity of the two k values.) 
We can estimate when case (ii) is relevant instead of case (i) for increasing Ra, by 

assuming a critical Reynolds number for turbulence and hence entrainment of interior 
fluid by the plume. Now from (4.1), 

U'8 K 2.29Rai 
Re = - v v  = - R a  1+,. 

If the critical value of Re is 103, Ra,  21 ( 4 4 0 ~ ) ~  delimits case (i) from case (ii). With 
(T = 7, case (i) is relevant for Ra,  < 3 x 1017; a turbulent plume requires an exception- 
ally large Rayleigh number !t 

Comparison of the present model with past work is now possible. Case (i) is applicable 
since the maximum Rayleigh number reported is 1.6 x 1O1O (Rossby 1965). Rossby 
estimated a value for the interior buoyancy to be 70 yo of the maximum imposed a t  
the bottom of his experimental cell, and this value was found to be substantially 
independent of Rayleigh number in the range 10' to 1010. The numerical experiments 
of Beardsley & Festa (1972) support a somewhat lower value but this may be attri- 
butable to  the lower Rayleigh numbers studied and the use of a free-slip boundary 
condition (see appendix B for a discussion of this problem). Now from (4.1) the 

t The non-turbulent RaL would not be, then, a relevant characterizing group for the model, 
and a turbulent value of RaL would be needed; cf. a turbulent Re of order unity for fully 
turbulent flow, where the mean flow Re could be very large. 
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FIGURE 4. Non-dimensional maximum stream function ( = vmsx/~) as s function of RaL. The 
left-hand side shows Beardsley & Fests's (1972) experiments (O), and the predictions of the 
model for rigid (-) and free-slip (---) boundaries. The right-hand side shows Rossby's 
(1965) experimental results (a), together with the present theoretical predictions ( + ), and the 
present predictions calculated the same way as Rossby ( x ). Note that the predictions for 
$msx decrease with RaL because of the Prandtl-number dependence. 

asymptote of ii predicts the interior buoyancy to be 60% of maximum imposed, 
independent of Rayleigh number, which is consistent with Rossby's results and also 
with the fact that the greater non-uniformity of a quadratic impressed buoyancy 
probably results in a lower interior value. Since the interior is advectively warmed, its 
temperature is an average of the warm fluid supplying it. Note that this conflicts with 
Stern's (1975) assumption that abyssal temperature is approximately that of the 
hottest fluid on the boundary. 

The greater non-uniformity of the impressed buoyancy field also probably explains 
the stronger circulation predicted for the quadratic as compared with a linear dis- 
tribution. (The wide boundary-layer width for Ra, N lo5, noted previously, also plays 
a part in the explanation.) Figure 4 compares the maximum dimensionless stream 
function, predicted from (3.10), using (2.5), to be 

$max = $ ' ( T - + ~ ) / K  = 0.860@~RaL 

with results of Rossby and Beardsley & Festa. (The latter paper used free-slip con- 
ditions, in fact; results from appendix B are plotted as the dashed line for comparison.) 
Noting that the aspect ratio, L I H ,  in Rossby's experiments was 2-5, and that, from 
(2.18), Ra, > 100 for the model to be valid, we see that the trends are in good agree- 
ment with Beardsley & Festa (not with Rossby) but that the quadratic impressed 
field results in a circulation some four times stronger than observed for a linear field. 
A greater acceleration is imparted to the fluid in the lower boundary layer by the 
increasing buoyancy gradient with distance along the bottom, by equation ( 2 . 8 ~ ) .  

The total disagreement with Rossby's data is at  first discouraging. However, 
Rossby estimated ykmaX from 8, where ukax was the maximum horizontal velocity 
observed, and 8 an estimate of boundary-layer thickness. It is easy to see from figure 2 
that such a calculation on our model would yield estimates of emax much smaller 
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than C. For comparison, then, $,,,has been computed from the model as Raf.,u,,8, 
where now 8 is the value of 7 a t  which A, reduces to  one-tenth its value at 7 = 0 (i.e. 
8 x 1.8). Figure 4 shows that differs by only a factor of 2 from Rossby’s (non- 
dimensional) estimates, which, given the error sources in the experiment, and the 
different boundary conditions, appears quite good agreement with data. 

Case (ii) permits prediction a t  very large Rayleigh numbers. From (4.2), the interior 
buoyancy is much the same as before, being 58 yo of maximum impressed. The interior 
asymptote for the stream function is (from (2.5),  (2.12)) 

$> - 0 . 6 3 8 ~  R a t t ( 7  - 0.53) 

(4.3) 

Thus the virtual origin of the plume insofar as i t  affects the interior, C0, is 

(4.4) 
O -  H H’  

That is, the plume appears to  originate within the boundary layer, supporting the 
form $; used here. Further, (4.3) shows that, for a fixed level within the cell, $; is 
predicted to  be proportional to R a t  and inversely proportional to the aspect ratio 
L I H .  This compares with $; - CK Rat  for case (i), a t  lower values of Ra,. 

L 6 5 - 0-53-R~aEi = 0.52- 

5. Flux exchange with environment 
So as t o  maintain a steady state, a particle displaced from the (almost) isothermal 

interior into the lower boundary layer is first cooled and then warmed by exchange 
with the lower boundary as it accelerates toward the right-hand side of the cell. 
Figure 5 (a)  illustrates the buoyancy distribution in the layer obtained by plotting 
(2.146) for case (i) (case (ii) is almost identical and is not shown). The similarity of 
the field with that found by Rossby (1965), the numerical models, and Hignett (1979), 
reproduced in figure 5(6), is striking (recall that  the right-hand side-wall layer is 
omitted; there the flow turns upwards into the interior, as a narrow jet). 

Plotted in figure 6 is the vertical buoyancy gradient - aA/aq at the lower boundary 
(cases (i) and (ii) are indistinguishable) together with the result if heat transfer in the 
cell were achieved solely by heat conduction. I n  that case the problem is to solve 

P A . ’  = 0 

aA 
- = 0  on [=0,1, 
a t  

such that 

and A =  t z  on p =  0. 

The solution is 
O3 4(-1)n  

A = + +  C ~ 

cosh (nn/D) (5- 1 )  
cosh (nn/D) 

cos nnt 
n=l (nnI2 

so 
a, 4(-1)7+1 nn 

cos nnt tanh - , 
D a t  5 =  0, aa/ = c  a5 conduction n=l nnD 
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FIGURE 5. (a )  Plot relative to the interior of the computed buoyancy distribution in the vicinity 
of the lower boundary at equidistant vertical sections for c = 7 and a laminar plume. The 
results for a turbulent plume are almost identical. The chain lines (----) are equally-spaced 
isopycnals. The dashed lines (---) are equally-spaced streamlines, which are then returned 
upwards in the side-wall layer on 6 = 1. ( b )  Contours of temperature found experimentally by 
Hignett (1979) in an annulus approximately 10 x 10 cm. The imposed temperature is not 
quadratic, and varies from 12.6 "C to 27.8 "C. The fluid is water, with RaL = 2 x lo8. 
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0 .  Convective A 
I 

0.4 - 

0.2 - 

0 

FIGURE 6. The non-dimensional buoyancy gradient - a A / a ~  011 71 = 0 as a fuiiction of l, from 
(2.14). Also shown is -aA/ag on 5 = 0 in the case of pure conduction, from (5 .1 ) .  The aspect 
ratio I) = L H - l  is 2.5. 

where D = L / H  is the aspect ratio. Convection in the box reduces the extreme warming 
in the vicinity of the plume origin, spreading this phase over a greater length of the 
boundary, as shown in figure 6. 

Following Rossby (1965) ,  define a Nusselt number based on the gross buoyancy 
flux into the box, Q,, by Nu, = QC/Qc conduction. Now 

From (2.14b) and (2.16c), aA/aq  = 0 a t  q = 0, 5 = 1 / 4 3  so that 

and for case (i), g ’ ( 0 )  = - 0-85 (for case (ii), g’(0) = - 0.87). From (5.1) 

D 
4( - 1p-1 

QC conduction = 
o 1 n = l  1277 

( 5 . 3 )  

Relation ( 5 . 3 )  is approximately independent of aspect ratio near D = 1 but ultimately 
decreases like l / D  for large D. For D = 2.5 (Rossby’s experiments), 

so 

QG conduction M O’360KAm 

for D = 2.5, Nu, = O.30Rak; 

for D = 1.0, Nu,  = 0 - 2 6 R a i .  
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FIGURE 7. The Nusselt number NUG as a function of Rayleigh number RaL. 0, Beardsley & 
Festa’s (1972) results (D = 1.0); 0, Rossby’s (1965) results (D = 2.5); 0, two results of 
Hignett (private communication) ( D  = 1.0). The straight lines show the theoretical prediction. 

Figure 7 illustrates Rossby’s (1965) results for Nu, compared with (5.4). It also 
shows Beardsley & Festa’s (1972) results (obtained for a square cell) compared with 
( 5 . 5 ) )  together with measurements by Hignett (private communication), also for a 
square cell. The agreement is excellent in view of the differing boundary conditions. 
The independence from Prandtl number as suggested by (5.4), (5 .5 ) ,  is confirmed, and 
the weak dependence on aspect ratio is also supported. 

6. Discussion 
By imposing a quadratic temperature distribution on the bottom of the otherwise 

insulated rectangular two-dimensional cell and imposing conditions of no-slip on this 
boundary, we have been able to  obtain similarity solutions for the boundary layer 
and interior for the problem first posed by Stommel (1962). The utilization of interior 
forms for 11. and A indicated by a previous study of a discrete plume in a box (Manins 
1979) and the recognition that the plume and outflow merely provide consistency 
conditions in the laminar case, and are of secondary importance in the turbulent case, 
has been central to  the approach. 

The interior buoyancy and gross Nusselt number have been shown to be insensitive 
to  Prandtl number (g > 1) and to be primarily functions of the horizontal Rayleigh 
number Ra,. The interior stream function varies roughly as the square root of the 
Prandtl number in the laminar case, and is insensitive t o  it in the turbulent case. I n  
either case, values of stream function within the thermal boundary layer are quite 
insensitive to  Prandtl number. I n  view of the differing boundary conditions, the 
agreement with Rossby’s (1965) laboratory results and the numerical results of 
Beardsley & Festa (1972) is satisfactory. 

Some useful conclusions may be drawn from this study regarding the efficiency of 
the exchange of buoyancy of the archetypal system with the environment: the 
dynamics of the side-wall plume are not important in determining the character of the 
circulation nor the interior buoyancy. Details of the shape of the impressed buoyancy 
field on the lower diabatic boundary appear to be unimportant so far as the overall 
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buoyancy exchange as measured by a gross Nusselt number is concerned. Indeed, a 
description of the diabatic layer (primarily in terms of horizontal Rayleigh number) 
is sufficient to provide an accurate determination of efficiency. 

This paper originated from work by the second author while a t  Cambridge (Manins 
1973). He thanks A. E. Gill for suggesting Rossby's paper for study and J. S. Turner 
for inspiration and example. The first author would like to thank P. Hignett and A. 
Ibbetson for laboratory results in rotating and non-rotating annuli which gave this 
paper its final stimulation. 

Appendix A. The side-wall boundary layers in the laminar regime 
( a )  The cold wall 

Integrating the non-dimensional form of ( 2 . 3 b )  between 6 = 0 and 1,  and from [ = 0 
to  [ yields 

R a ~ D - l / o l @ , ( A - A , ) d ~  = -I0'Acl ,=0 d t ,  (A 1)  

where D is the aspect ratio LH-I. Thus, following Stern (1975), 

On the cold wall (5 = 0)) A, is one-signed, as the fluid has its maximum density on 
( = 5 = 0. Since @ cannot change sign (this would involve flow towards the cold 
wall), (A 2)  implies that  

@ = O ,  g+o (A 3) 

is the relevant condition on the interior stream function. Equation (2.8a) then implies 
that  A, = 0, (-+ 0 is also satisfied. Hence only the no-slip condition on 6 = 0 remains to 
be satisfied. This is achieved by a boundary layer of thickness Ra$o (and still of depth 
Ra,*, i.e. within the bottom boundary layer). The dynamics are similar to those found 
by Walin (1971) .  Let 

A Rai' 7) f AB(7), (A 5 )  

near 6 = 0, where the vanishing of @ and A, in the bottom layer (suffix B )  has been 
allowed for. A, vanish as X+co. Then ( 2 . 6 )  become 

or 

Since A,, ' 0 (A 9) 

A,, = 0, @IX = --$'B', x = 0 (A 10) 

(A 8) has 2 roots which decay for large positive X and, to satisfy the boundary 
conditions 
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(which makes $l = 0 also, incidentally), the solution is 

P. D. Killworth and P.  C. Manins 

( b )  The hot wall 
Equation (A 2) still holds as 5 4  1, but now A, (or At;) changes sign with 7: AB is 
less dense than the interior, but above the base there is fluid which is more dense than 
the interior. Since $ cannot be zero on 6 = 1 (which would imply that w changes sign 
with 6 somewhere in the interior), (A 2) yields no useful consistency condition on the 
interior flow. Indeed, no consistency condition has been found, owing to the non- 
linearity of the side-wall layers. 

The structure of the side-wall layers is of interest, and will be briefly described. A 
useful constraint is found from a direct integration of the non-dimensional form of 
(2.3b): 

/01dS(A5+Rak$cA) = 0, (A 13) 

where the aspect ratio D has been set to unity. This states that the total vertical 
buoyancy transfer (by diffusion and advection) a t  any level must vanish. 

Away from the bottom layer (i.e. where 5 is order unity) the contribution of Ac to 
(A 13) is zero, or a t  least exponentially small. Since A is homogeneous (i.e. = A,) in the 
interior, the vertical advection term may be written 

and the first term vanishes because of the boundary condition on $. Hence (A 13) 
requires there to be no anomalous vertical buoyancy transport in any side-wall layer, 
or 

Now the scaling for a side-wall layer far from the bottom boundary must be (Rossby 
1965) 
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Equation ( A  17) may be integrated with respect to X 
(A 18) are fully nonlinear. As X --f - a, they become 

1 
?klXXX = A 1  + ; $ i C  1CrlXX9 

A l X  = $i'i5A,, 
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once, but both (A 17) and 

which possess decaying solutions provided ui = $is is positive, i.e. the flow is towards 
the wall. The layer thus represents a balance between outward diffusion and inward 
advection of vorticity, modified by buoyancy forces. 

The vertical transport of buoyancy in this layer is proportional to 

after some algebra. From (A 14), this must vanish. If u is O( l), as assumed implicitly, 
this presents no problems. But as a increases, the first term on the right-hand side of 
(A 21) begins to dominate (except over a limited distance in [ near the bottom). For 
large (r, then, 

What in fact occurs is that the width of the layer becomes formally dRaZ* rather 
than RaZt, with a balance between nonlinear and viscous forces (rather like the 
stagnation flow problem; Batchelor (1967, pp. 285-289)), and simple advection of 
buoyancy. The uniform interior buoyancy thus implies that there is uniform buoyancy 
in the side-wall layer as well.? However, without knowing the distribution of ui([), 
the side-wall layer cannot be solved explicitly. 

The dynamics of the turning region (7 N O( I ) ,  < z 1)  are fairly similar. I ts  width is 
formally RaiQ. Writing 

must vanish and there is apparently no layer of this type. 

A A B ( < ,  7) + A1(x? T ) ,  (A 23) 

where suffix B now represents values in the bottom layer, (2.6) yields, after one 
integration, 

@lX('B7+ '17 )  - ' l X ( + B q +  $17) + A I X X  = (A 24) 

so that the fluid turns the corner without feeling any buoyancy force, under a balance 
between nonlinear and viscous effects. The buoyancy is advected and diffused by the 
velocity field given by (A 26); A,  tends to zero as 7 increases, as the fluid becomes homo- 
geneous in the interior. The width of the layer (which is proportional to &$) increases 
as 7 becomes large, eventually becoming the interior side-wall layer (A 17). 

As u becomes large, the structure of the turning region becomes more complicated. 
For O( 1) values of 7, the layer width is uRa,?. Within this turning region, the buoyancy 

t Rossby's (1965) results for CT = 13 (which do show a non-uniform buoyancy in the side- 
wall layer) may perhaps have been caused by imperfect insulation. Only a tiny heat flux through 
the wall is needed to maintain a diffusive boundary layer. 
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FIGURE 8. Similarity solutions for the lower boundary layer in figure 1 for the 
case of a laminar side-wall layer and free-slip bottom boundary, = 7. 

equation is purely advective, together with a balance of nonlinear and viscous vorticity 
terms. This layer turns the fluid around the corner and upwards, in the direction of 
increasing 7. 

When 7 becomes of order ud, $nl, is O(1) and the layer width remains uRa$ (it 
will begin to  widen as 7 increases further, until it matches onto the interior side-wall 
layer). The buoyancy balance remains advective. 

It is clear that diffusion must become important somewhere, as otherwise buoyancy, 
conserved on streamlines, could not asymptote to  the interior value AT; in fact, the 
diffusion terms enter for 7 of order u&, in an inner layer of width Ra$, driven by the 
outflow from the turning region immediately beneath. This layer completes the 
specification of the side-wall boundary layers. 

Appendix B. Free-slip boundary conditions 
The numerical solutions of Somerville (1967) and Beardsley 8: Festa (1972) allowed 

free-slip conditions on the bottom boundary rather than rigid walls. This is simulated 
in our model by replacing (2.16 b )  by 

f" = 0, 7 = 0. (B 1)  

The solution for case (i) (laminar plume) is shown in figure 8, for u = 7. Comparison 
with figure 2 shows that the boundary layer is considerably thinner than in the no-slip 
case (A, reaches & its value a t  7 = 0 when 7 = 1.2; cf. 1.8 in the no-slip case). The 
horizontai velocity, f ' ,  is maximized at 7 = 0. The asymptotic buoyancy, k,, is 
increased to  0.68. Now Beardsley & Festa found the interior buoyancy to be 
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independent of the details of the velocity condition on the bottom boundary 
(although this was deduced from comparison of their free-slip computations and 
Rossby’s experimental no-slip results). 

Our results, however, would suggest an increase in AT by 13 yo when the condition 
is changed from no-slip to free-slip. (This seems quite plausible: the more rapid motion 
permitted in the lower layer with free-slip can advect more warm water into the 
interior.) The discrepancy may be again due to  the rather wide bottom boundary 
layer in Beardsley & Festa’s results, caused by their low values of Ra,. 

The const,ant C again varies with Prandtl number: 

C N 1 . 0 6 ~ ~ ‘ ~ ~  (B 2) 

(over a wide range of a this would again vary as at) so that the interior stream 
function (and therefore the vertical velocity) is stronger than in the no-slip case; 
again, this seems intuitive. 

It should be noted, finally, that  the solution for case (ii) (turbulent plume) is non- 
unique under free-slip conditions; there are an infinity of solutions possible, and the 
appropriate solution can only be determined by more detailed analysis of the plume 
itself. 
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